Despite the remarkable success of existing methods for few-shot segmentation, there remain two crucial challenges. First, the feature learning for novel classes is suppressed during the training on base classes in that the novel classes are always treated as background. Thus, the semantics of novel classes are not well learned. Second, most of existing methods fail to consider the underlying semantic gap between the support and the query resulting from the representative bias by the scarce support samples. To circumvent these two challenges, we propose to activate the discriminability of novel classes explicitly in both the feature encoding stage and the prediction stage for segmentation. In the feature encoding stage, we design the Semantic-Preserving Feature Learning module (SPFL) to first exploit and then retain the latent semantics contained in the whole input image, especially those in the background that belong to novel classes. In the prediction stage for segmentation, we learn an Self-Refined Online Foreground-Background classifier (SROFB), which is able to refine itself using the high-confidence pixels of query image to facilitate its adaptation to the query image and bridge the support-query semantic gap. Extensive experiments on PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrates the advantages of these two novel designs both quantitatively and qualitatively.
translated by 谷歌翻译
虽然基于微调对象检测的基于微调的方法已经取得了显着的进步,但尚未得到很好的解决的关键挑战是基本类别的潜在特定于类别的过度拟合,并且针对新颖的类别的样本特异性过度拟合。在这项工作中,我们设计了一个新颖的知识蒸馏框架,以指导对象探测器的学习,从而抑制基础类别的前训练阶段的过度拟合,并在小型课程上进行微调阶段。要具体而言,我们首先提出了一种新颖的位置感知的视觉袋模型,用于从有限尺寸的图像集中学习代表性的视觉袋(BOVW),该模型用于基于相似性来编码常规图像在学习的视觉单词和图像之间。然后,我们基于以下事实执行知识蒸馏,即图像应在两个不同的特征空间中具有一致的BOVW表示。为此,我们独立于对象检测的特征空间预先学习特征空间,并在此空间中使用BOVW编码图像。可以将图像的BOVW表示形式视为指导对象探测器的学习:对象检测器的提取特征对同一图像的提取特征有望通过蒸馏知识得出一致的BOVW表示。广泛的实验验证了我们方法的有效性,并证明了优于其他最先进方法的优势。
translated by 谷歌翻译
几次射击对象检测的大多数现有方法都遵循微调范式,该范式可能假设可以通过众多样本的基本类别学习并将其隐式转移到具有限量样本的新颖类中,从而将类别的概括性知识隐含地转移到有限的类别中。舞台培训策略。但是,这不一定是正确的,因为对象检测器几乎无法在没有明确的建模的情况下自动区分类别不合时宜的知识和特定于类的知识。在这项工作中,我们建议在基础和新颖类之间学习三种类型的类不足的共同点:与识别相关的语义共同点,与定位相关的语义共同点和分布共同点。我们基于内存库设计了一个统一的蒸馏框架,该框架能够共同有效地进行所有三种类型的共同点。广泛的实验表明,我们的方法可以很容易地集成到大多数现有的基于微调的方法中,并始终如一地通过大幅度提高性能。
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
Users' physical safety is an increasing concern as the market for intelligent systems continues to grow, where unconstrained systems may recommend users dangerous actions that can lead to serious injury. Covertly unsafe text, language that contains actionable physical harm, but requires further reasoning to identify such harm, is an area of particular interest, as such texts may arise from everyday scenarios and are challenging to detect as harmful. Qualifying the knowledge required to reason about the safety of various texts and providing human-interpretable rationales can shed light on the risk of systems to specific user groups, helping both stakeholders manage the risks of their systems and policymakers to provide concrete safeguards for consumer safety. We propose FARM, a novel framework that leverages external knowledge for trustworthy rationale generation in the context of safety. In particular, FARM foveates on missing knowledge in specific scenarios, retrieves this knowledge with attribution to trustworthy sources, and uses this to both classify the safety of the original text and generate human-interpretable rationales, combining critically important qualities for sensitive domains such as user safety. Furthermore, FARM obtains state-of-the-art results on the SafeText dataset, improving safety classification accuracy by 5.29 points.
translated by 谷歌翻译
Conditional diffusion probabilistic models can model the distribution of natural images and can generate diverse and realistic samples based on given conditions. However, oftentimes their results can be unrealistic with observable color shifts and textures. We believe that this issue results from the divergence between the probabilistic distribution learned by the model and the distribution of natural images. The delicate conditions gradually enlarge the divergence during each sampling timestep. To address this issue, we introduce a new method that brings the predicted samples to the training data manifold using a pretrained unconditional diffusion model. The unconditional model acts as a regularizer and reduces the divergence introduced by the conditional model at each sampling step. We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks. The improvements obtained by our method suggest that the priors can be incorporated as a general plugin for improving conditional diffusion models.
translated by 谷歌翻译
In a high dimensional linear predictive regression where the number of potential predictors can be larger than the sample size, we consider using LASSO, a popular L1-penalized regression method, to estimate the sparse coefficients when many unit root regressors are present. Consistency of LASSO relies on two building blocks: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix of the regressors. In our setting where unit root regressors are driven by temporal dependent non-Gaussian innovations, we establish original probabilistic bounds for these two building blocks. The bounds imply that the rates of convergence of LASSO are different from those in the familiar cross sectional case. In practical applications given a mixture of stationary and nonstationary predictors, asymptotic guarantee of LASSO is preserved if all predictors are scale-standardized. In an empirical example of forecasting the unemployment rate with many macroeconomic time series, strong performance is delivered by LASSO when the initial specification is guided by macroeconomic domain expertise.
translated by 谷歌翻译
Existing methods for large-scale point cloud semantic segmentation require expensive, tedious and error-prone manual point-wise annotations. Intuitively, weakly supervised training is a direct solution to reduce the cost of labeling. However, for weakly supervised large-scale point cloud semantic segmentation, too few annotations will inevitably lead to ineffective learning of network. We propose an effective weakly supervised method containing two components to solve the above problem. Firstly, we construct a pretext task, \textit{i.e.,} point cloud colorization, with a self-supervised learning to transfer the learned prior knowledge from a large amount of unlabeled point cloud to a weakly supervised network. In this way, the representation capability of the weakly supervised network can be improved by the guidance from a heterogeneous task. Besides, to generate pseudo label for unlabeled data, a sparse label propagation mechanism is proposed with the help of generated class prototypes, which is used to measure the classification confidence of unlabeled point. Our method is evaluated on large-scale point cloud datasets with different scenarios including indoor and outdoor. The experimental results show the large gain against existing weakly supervised and comparable results to fully supervised methods\footnote{Code based on mindspore: https://github.com/dmcv-ecnu/MindSpore\_ModelZoo/tree/main/WS3\_MindSpore}.
translated by 谷歌翻译
Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize \emph{dataset contributors}. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with \emph{rich characteristics}, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at \url{https://github.com/Graph-Learning-Benchmarks/gli}.
translated by 谷歌翻译
In recent years, using a self-supervised learning framework to learn the general characteristics of graphs has been considered a promising paradigm for graph representation learning. The core of self-supervised learning strategies for graph neural networks lies in constructing suitable positive sample selection strategies. However, existing GNNs typically aggregate information from neighboring nodes to update node representations, leading to an over-reliance on neighboring positive samples, i.e., homophilous samples; while ignoring long-range positive samples, i.e., positive samples that are far apart on the graph but structurally equivalent samples, a problem we call "neighbor bias." This neighbor bias can reduce the generalization performance of GNNs. In this paper, we argue that the generalization properties of GNNs should be determined by combining homogeneous samples and structurally equivalent samples, which we call the "GC combination hypothesis." Therefore, we propose a topological signal-driven self-supervised method. It uses a topological information-guided structural equivalence sampling strategy. First, we extract multiscale topological features using persistent homology. Then we compute the structural equivalence of node pairs based on their topological features. In particular, we design a topological loss function to pull in non-neighboring node pairs with high structural equivalence in the representation space to alleviate neighbor bias. Finally, we use the joint training mechanism to adjust the effect of structural equivalence on the model to fit datasets with different characteristics. We conducted experiments on the node classification task across seven graph datasets. The results show that the model performance can be effectively improved using a strategy of topological signal enhancement.
translated by 谷歌翻译